NOTES 11.3

Chapter 11 - Matter & Energy in the Environment Lesson 3 - Energy in Ecosystems

How does energy move in ecosystems?

When you see a picture of an ecosystem, it often looks quiet & peaceful. However, ecosystems are actually full of movement & each movement requires ENERGY!

- Energy is required for growth & development we get it from the "" sun.
- Unlike carbon & oxygen, energy DOES NOT cycle through ecosystems it flows in 1 direction.
- Energy cannot be created nor destroyed, only changed in form the law of conservation of energy.

Organisms in an environment are either - producers, consumers or decomposers

Producers

- autotrophs
- living things that make their own food through photosynthesis
- grasses, trees, plants, algae
- bacteria can be photoautotrophs use photosynthesis to make food
- bacteria can be chemoautotrophs use chemosynthesis to make food by using inorganic compounds - hydrogen & sulfur + thermal heat

Consumers

- heterotrophs
- living things that DO NOT make their own food & must obtain it
- classified by what type of food they eat carnivores, herbivores, omnivores

carnivores

- ONLY eat other animals
- examples lions, polar bears, hawks, frogs, salmon, & spiders

herbivores

- consume producers such as plants or algae
- necessary link between producers and other consumers
- examples deer, rabbits, and mice

omnivores

- consume BOTH plants and animals
- examples humans, pigs, brown bears, gulls, crows, and some species of fish

Decomposers

- break down dead organisms & wastes putting inorganic molecules back into the environment
- stability of decomposers is essential to every ecosystem
- classified by the type of organic matter they break down scavengers, detritivores, & saprotrophs

scavengers

- consume the soft tissues of dead animals
- examples vultures, raccoons, and blowflies

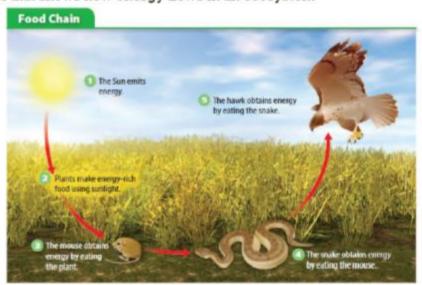
detritivores

- consume detritus the dead leaves, animal poop, and other organic debris in soil or at the bottom of a body of water
- examples on land earthworms, millipedes, and dung beetles
- examples in water "bottom feeders" such as sea cucumbers and catfish

saprotrophs

- feed on any remaining organic matter that is left after other decomposers do their work
- examples fungi, bacteria, and single-celled protozoa
- Fungi are the only organisms that can decompose wood.

Modeling Energy in Ecosystems

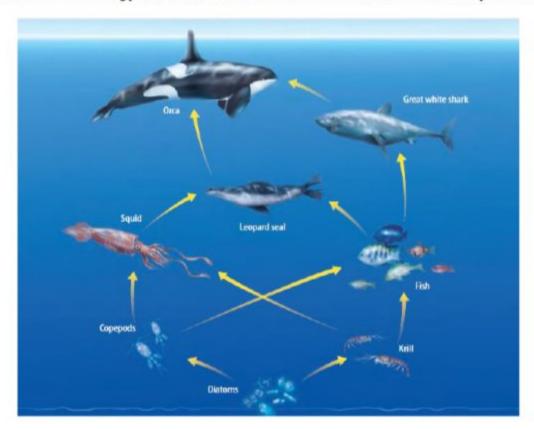

Energy -

- does not cycle through ecosystems -> energy flows through ecosystems
- can be stored as chemical energy
- inal Food chain

arrows → show transfer of energy

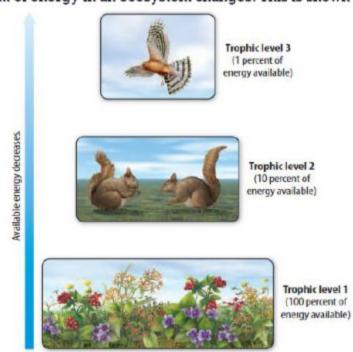
Q: What is a food chain?

A: a model that shows how energy flows in an ecosystem


Food Webs

Food Webs

show many overlapping food chains.


Q: What is a food web?

A: a model of energy transfer that shows how food chains in a community are interconnected

Energy Pyramids

Food chains and food webs show how energy moves in an ecosystem but they don't show how the amount of energy in an ecosystem changes. This is shown in an

Energy Pyramids

Q: What is an energy pyramid?

- A: a model used to show the amount of energy available in each step of a food chain
 - Steps are called trophic levels
 - · producers are at the bottom
 - consumers that eat producers are middle level
 - consumers who eat other consumers are at the top level
 - energy DECREASES as you move up a energy pyramid