Complex Patterns of Inheritance

Okay, so what about organisms that inherit 1 allele from each parent and appear in phenotype as a mixture of both parents?

Well, for some alleles, inheritance patterns called -

$$
\square \text { - Male ó } \bigcirc \text { =Finale? }
$$

incomplete dominance

 \&
codominance oxist.

Figure 1. $P=$ petals, $^{\mathbb{R}}=$ red, ${ }^{r}=$ white

Q : What is codominance?
A: a condition in which neither of 2 alleles of a gene is dominant or recessive but both alleles are represented in the offspring; when both alleles can be observed in a phenotype

Ex. $\quad F^{B} F^{B}$
vs. $\mathrm{F}^{W} \mathrm{~F}^{\mathrm{W}}$
(black)
(white)

Multiple Alleles

Some human traits are controlled by a single gene that has more than 2 alleles known as -

multiple alleles

Q: What are multiple alleles?
A: 3 or more forms of a gene that code for a single trait
However, even though a gene may have multiple alleles a person can carry only 2 of those alleles. This occurs because chromosomes exist in pairs, and each chromosome, in a pair carries only 1 allele for each gene.

Ex. blood type

main blood types -

Polygenic Inheritance

Some human traits show a large number of phenotypes because the traits are controlled by many genes.

Male or Female?

Q: What factors determine whether a baby is a boy or a girl?
A: the sex of a baby is determined by the genes on its chromosomes
Among our pairs of chromosomes is a single pair called the

Q: What are the sex chromosomes?
A: the pair of chromosomes that determine whether a person is male or female
Q: What are the chances of parents having a boy or girl?

А: 50% male, 50% female

Q : What sex will the child be if a sperm with a Y chromosome fertilizes an egg?
A:

```
Male, XY
```

Q: If a dad in the above Punnett Square had an allele ${ }^{\AA}$ on his X chromosome, which of his children his sons or his daughters - would inherit the allele \& trait?

A:
daughters

Q: Why wouldn't his sons inherit the allele?
${ }^{\text {a: }}$ because boys don't inherit X from dad, only Y

Sex-Linked Genes \& Traits

Some human traits are carried on the sex chromosomes - X \& Y - known as
Q: What is a sex-linked gene?
A: a gene that is carried on the X or Y chromosome

sex-linked traits

Traits controlled by sex-linked genes are called -
Q: What is sex-linked trait?
A: a trait controlled by a sex-linked gene

Sex-linked genes -

- can have dominant \& recessive alleles (letters)
- are more likely to occur in males than in females
- females are
carriers of sex-linked traits

Q : What is a carrier?
A: a person who has one recessive allele for a trait and one dominant allele for a trait
A carrier-

- DOES NOT have the trait
- passes the recessive allele on to their offspring

Ex. color blindness (red-green)

Q: What allele combination would a daughter need to inherit to be colorblind?
A: \square

colors as seen with normal vision

same colors as seen with red-green color deficiency

Q: If a sex-linked trait is controlled by a dominant allele, would the trait be more common in males than in females?
8: Males, b / c they only have to inherit 1 allele

Genes \& the Environment

The effects of are often altered by the environment - the organism's surroundings.
Ex. a person's diet can affect their height by eating foods not rich in necessary protein, vitamins \& minerals

Q: How can environmental factors affect a person's height? A: (answer on your CW sheet)

Pedigrees

Imagine you are a geneticist interested in studying inheritance patterns in humans. What would you do?

One tool that geneticists use to trace the inheritance of traits in humans is a

pedigree

Q : What is a pedigree?
A: a chart or "family tree" that tracks which members of a family have a particular trait

Exploring a Pedigree

Q: How many married couples are there in the second generation?

A: \square

Q: How many females are carriers?
A:

Q: How many $3^{\text {rd }}-$ generation individuals could have colorblind daughters?
A: \square

Q: In all 3 generations, how many males are colorblind?
A: 2

Q: How is a pedigree like a "family tree"? How is it different?
A: $\begin{aligned} & \text { Same } \mathrm{b} / \mathrm{c} \text { it shows relatives, different } \mathrm{b} / \mathrm{c} \text { shows } \\ & \text { traits }\end{aligned}$

