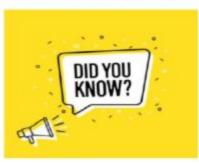
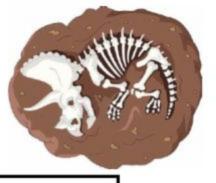
NOTES 6.1

Chapter 6 - The Environment and Changes Over Time Lesson 1 - Fossil Evidence of Evolution


Fossil Formation

Some of the most important clues to Earth's past are fossils.


O: What is a fossil?

A: the preserved remains or evidence of once-living organisms

Only the hard parts of organisms are preserved in fossils.

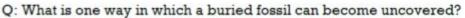
Most fossils form when organisms that die become buried in

sediments

O: What are sediments?

A: particles of soil and rock

Layers of sediments build up and cover the dead organism.


Over millions of years, the layers harden to become

sedimentary rock

Q: What is sedimentary rock?

A: a type of rock that forms when particles from other rocks or the remains of plants and animals are pressed and cemented together

A:

digging, rain, erosion, weathering

There are

forms fossils can take -

1. Mineralization

Q: What are mineralized fossils?

A: a fossil in which minerals (rock) replace all or part of an organism

Ex. dinosaurs

2. Mold

Cast

Q: What is a mold?

A: a fossil formed when the impression of an organism is left in rock

O: What is a cast?

A: a fossil that is a copy of an organism's shape

Mold Cast

3. Carbonization

Q: What are carbonized fossils?

A: a fossil formed when a dead organism is compressed over time and pressure releases liquid and gas from decomposing tissues

4. Trace Fossil

Q: What is a trace fossil?

A: the preserved evidence of the activity of an organism

Ex. animal tracks

5. Original Material

Q: What are preserved remains?

A: remains of any organism not preserved in traditional rock but another substance

Ex. fossils preserved in ice, tar pits, amber (1st Jurassic Park)

Determining a Fossil's Age

Scientists can determine a fossil's age in one of

ways -

Relative-age dating

Absolute-age dating

(numerical dating)

Relative-Age Dating

Scientists use relative-age dating to determine which of two fossils is older.

In a sequence of rock layers, the layers at the top are younger than the lower layers.

Therefore, fossils found in top layers are younger than fossils found in bottom layers.

- can only be used when the rock layers have been preserved in their original sequence
- used to determine whether one fossil is older than another
- DOES NOT determine actual age

: Which rock layers contain younger fossils?

those on the top layers

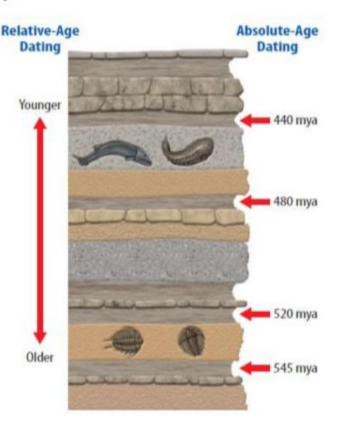
Absolute-Age Dating

Another technique, called absolute - age dating, allows scientists to determine the actual age of fossils.

The rocks that fossils are found near contain

Radioactive elements

Q: What are radioactive elements?


A: unstable elements that decay, or break down, into different elements

The half-life of a radioactive element is the time it takes for half of the atoms in a sample to decay.

Scientists can compare the amount of a radioactive element in a sample to the amount of the element into which it breaks down to calculate the age of the rock and thus the age of the fossil.

- can be used when the rock layers have been disturbed and are not in their original sequence
- used to determine actual age, in numbers

The Fossil Record

Scientists have calculated the ages of many different fossils and rocks using the fossil record.

Q: What is the fossil record?

A: an incomplete record of all of the fossils ever discovered on Earth

Despite gaps in the fossil record, it has given scientists a lot of important information about past life on

Earth because nearly all of the species preserved as fossils are now

extinct

Q: What does it mean to be extinct?

A: when no members of a species are still alive

Scientists use fossils of bones, teeth, and footprints to construct models of extinct animals.

Fossils Over Time

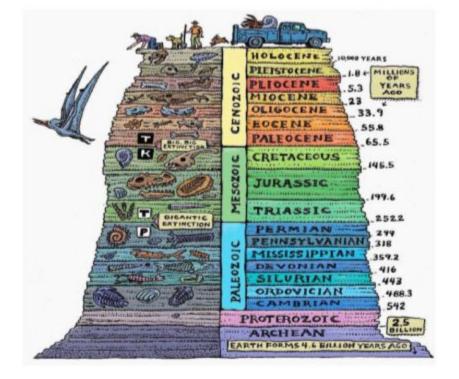
From this information, they have created a "calendar" of Earth's history - called the Geologic Time Scale that spans more than 4.6 billion years.

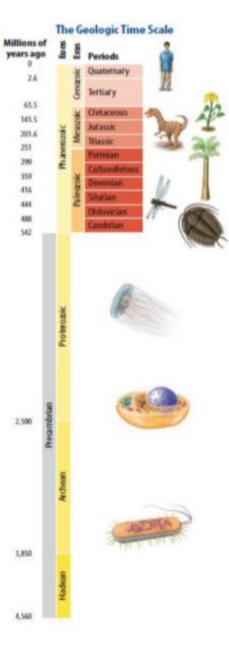
The largest length of time in the scale is Precambrian Time – about 87% of Earth's history- or 4 billion years!

After the Precambrian, the scale is divided into

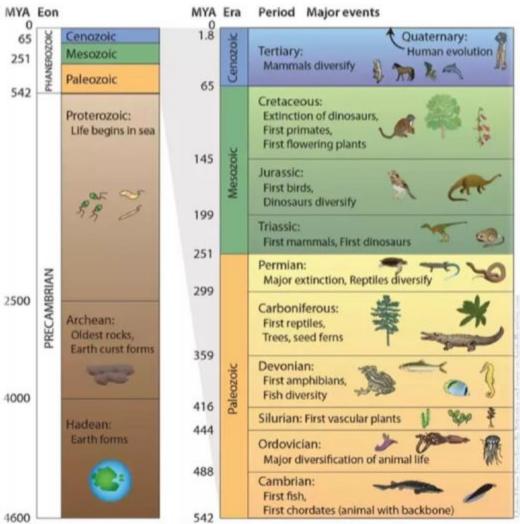
led into major eras -

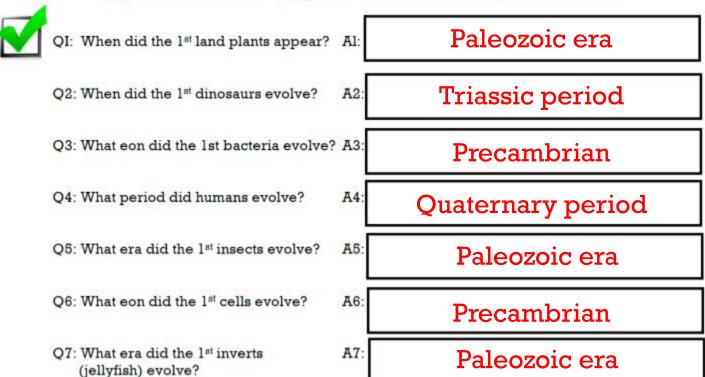
Paleozoic era


Old life


Mesozoic era

Middle life


Cenozoic era


New life

The Geologic Time Scale

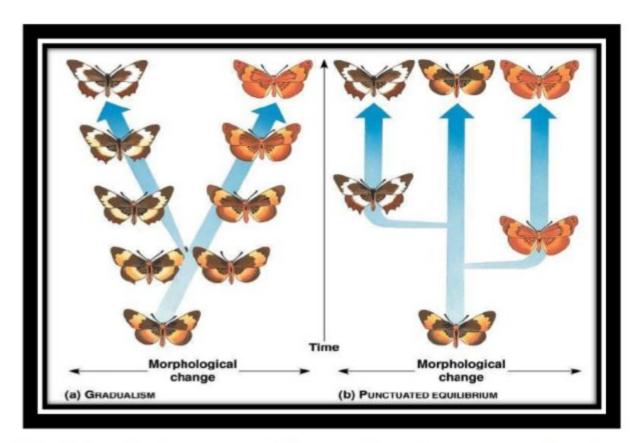
Extinctions & Evolution

Q: What is extinction?

A: when the last individual organism of a species dies

Because the fossil record is incomplete, many questions about evolution remain unanswered & theories exist -

gradualism


tiny changes in a species gradually add up to major changes over very long periods of time

- evolution occurs slowly but steadily
- contains intermediate forms

Punctuated equilibrium

species evolve quickly when groups become isolated and adapt to new environments

- species evolve during short periods of rapid change
- contains no intermediate forms

Scientists think that evolution can occur gradually at some times and fairly rapidly at others, known as

Biological evolution

Q: What is biological evolution?

A: the change over time in populations of related organisms